Coexistence in a Two-Dimensional Lotka-Volterra Model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model.

Cyclic dominance of species has been identified as a potential mechanism to maintain biodiversity, see, e.g., B. Kerr, M. A. Riley, M. W. Feldman and B. J. M. Bohannan [Nature 418, 171 (2002)] and B. Kirkup and M. A. Riley [Nature 428, 412 (2004)]. Through analytical methods supported by numerical simulations, we address this issue by studying the properties of a paradigmatic non-spatial three-...

متن کامل

Two dimensional heteroclinic attractor in the generalized Lotka-Volterra system

We study a simple dynamical model exhibiting sequential dynamics. We show that in this model there exist sets of parameter values for which a cyclic chain of saddle equilibria, Ok, k = 1, . . . , p, have two dimensional unstable manifolds that contain orbits connecting eachOk to the next two equilibrium pointsOk+1 andOk+2 in the chain (Op+1 = O1). We show that the union of these equilibria and ...

متن کامل

Extinction in Lotka-Volterra model

Competitive birth-death processes often exhibit an oscillatory behavior. We investigate a particular case where the oscillation cycles are marginally stable on the mean-field level. An iconic example of such a system is the Lotka-Volterra model of predator-prey competition. Fluctuation effects due to discreteness of the populations destroy the mean-field stability and eventually drive the syste...

متن کامل

Fixation in a cyclic Lotka-Volterra model

We study a cyclic Lotka-Volterra model of N interacting species populating a d-dimensional lattice. In the realm of a Kirkwood approximation, a critical number of species Nc(d) above which the system fixates is determined analytically. We find Nc = 5, 14, 23 in dimensions d = 1, 2, 3, in remarkably good agreement with simulation results in two dimensions. A cyclic variant of the Lotka-Volterra ...

متن کامل

Coexistence and survival in conservative Lotka-Volterra networks.

Analyzing coexistence and survival scenarios of Lotka-Volterra (LV) networks in which the total biomass is conserved is of vital importance for the characterization of long-term dynamics of ecological communities. Here, we introduce a classification scheme for coexistence scenarios in these conservative LV models and quantify the extinction process by employing the Pfaffian of the network's int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2010

ISSN: 1083-6489

DOI: 10.1214/ejp.v15-795